

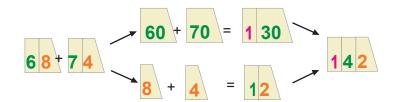
Using place value

Count in 100s

e.g. *Know 475* + 200 as 475, 575, 675

Year 3

Add multiples of 10, 100 and £1


Partitioning

e.g. £8·50 + £3·70 as £8 + £3 and 50p + 70p and combine the totals: £11 + £1·20

e.g. 347 + 36 as 300 and 40 + 30 and 7 + 6 and combine the totals: 370 + 13 = 383

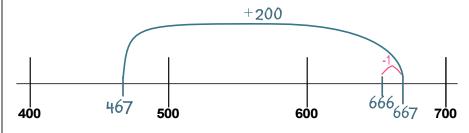
e.g. 68 + 74 as 60 + 70 and 8 + 4 and combine

the totals: 130 + 12 = 142

Year 4

Using place value

Count in 1000s


e.g. Know 3475 + 2000 as 3475, 4475, 5475

Partitioning

Counting on

Add 2-digit numbers to 2-, 3- and 4-digit numbers by adding the multiple of 10 then the 1s

Add near multiples of 10, 100 and 1000

Count on to add 3-digit numbers and money

Cou	ıntir	ng	or
٨٨٨	two	2	dia

Add two 2-digit numbers by adding the multiple of 10, then the 1s

Year 3

Add near multiples of 10 and 100

Add pairs of 'friendly' 3-digit numbers

Count on from 3-digit numbers

Using number facts

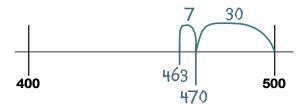
Know pairs which total each number to 20

e.g.
$$7 + 8 = 15$$

e.g.
$$12 + 6 = 18$$

Number bonds to 100

Add to the next 10 and the next 100


Year 4

Using number facts

Number bonds to 100 and to the next multiple of 100

e.g.
$$1353 + 47 = 1400$$

e.g.
$$463 + 37 = 500$$

Number bonds to £1 and to the next whole pound

e.g.
$$63p + 37p = £1$$

e.g. £
$$3.45 + 55p = £4$$

Add to the next whole number

	Year 3	Year 4
	Build on partitioning to develop expanded column addition with two 3-digit numbers e.g. 466 + 358	Build on expanded column addition to develop compact column addition with larger numbers e.g. 1466 + 4868
	$ + \frac{400 60 6}{300 50 8} $ $ + \frac{700 110 14}{100 140} = 824 $ Use expanded column addition where digits in a column add to more than the column value	1000 400 60 6 4000 800 60 8 + 1000 100 10 6000 300 30 4
Written Addition	e.g. $466 + 358$ 400 60 6 300 50 8 + 100 10 800 20 4 Compact column addition with two or more 3-digit numbers or towers of 2-digit numbers e.g. $347 + 286 + 495$ 347 286 + 495 21 1128 Compact column addition with 3- and 4-digit numbers Recognise like fractions that add to 1	Compact column addition with larger numbers e.g. 5347 + 2286 + 1495 5347 2286 + 1495 121 9128 Use expanded and compact column addition to add amounts of money Add like fractions e.g. 3/8 + 1/8 + 1/8
	e.g. 1/4 + 3/4 e.g. 3/5 + 2/5	

						Yea	ar 5	5			Year 6
Using place value Count in 0·1s, 0·01s e.g. Know what 0·1 more than 0·51 is				Using place value Count in 0·1s, 0·01s, 0·001s e.g. Know what 0·001 more than 6·725 is Partitioning							
	1	l0s		19	8	(0·1s		0.0	1s	e.g. 9·54 + 3·23 as 9 + 3, 0·5 + 0·2 and 0·04 + 0·03, to give 12·7
				0)		5		1		Counting on Add two decimal numbers by adding the 1s, then the 0.1s/0.01s/0.001s
e.g. 2·4 + the totals:	5·8 7 + 0·1 1·1 2·1 3·1 4·1 5·1 6·1 7·1	1·2 2·2 3·2 4·2 5·2 6·2 7·2	0·3 1·3 2·3 3·3 4·3 5·3 6·3 7·3 8·3	8·2 0·4 1·4 2·4 3·4 4·4 5·4 6·4 7·4	0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5	0.6 1.6 2.6 3.6 4.6 5.6 6.6 7.6	0·7 1·7 2·7 3·7 4·7 5·7 6·7 7·7	0·8 1·8 2·8 3·8 4·8 5·8 6·8 7·8	0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9	1 2 3 4 5 6 7 8	e.g. 6·314 + 3·006 as 6·314 + 3 (9·314) + 0·006 = 9·32 Add near multiples of 1 e.g. 6·345 + 0·999 e.g. 5·673 + 0·9 Count on from large numbers e.g. 16 375 + 12 003 as 28 375 + 3
	Count in 0·1 e.g. <i>Know</i> Partitioning e.g. 2·4 +	Count in 0·1s, 0 e.g. <i>Know wh</i> Partitioning e.g. 2·4 + 5·8 the totals: 7 + 0·1 1·1 2·1 3·1 4·1 5·1 6·1 7·1 8·1	Count in 0-1s, 0-01s e.g. Know what 0 10s Partitioning e.g. 2-4 + 5-8 as the totals: 7 + 1-2 11 12 21 22 31 3-2 41 4-2 51 5-2 61 6-2 71 7-2 81 8-2	Count in 0·1s, 0·01s e.g. <i>Know what 0·1</i> 10s 10s Partitioning e.g. 2·4 + 5·8 as 2 + the totals: 7 + 1·2 = 01 0·2 0·3 11 1·2 1·3 21 2·2 2·3 31 3·2 3·3 41 4·2 4·3 51 5·2 5·3 61 6·2 6·3 71 7·2 7·3 8·1 8·2 8·3	Count in 0·1s, 0·01s e.g. Know what 0·1 more 10s 10s 1s 10s 1s 1s 10s 1s 1s	Using place value Count in 0·1s, 0·01s e.g. Know what 0·1 more the 10s 1s 0 Partitioning e.g. 2·4 + 5·8 as 2 + 5 and 6 the totals: 7 + 1·2 = 8·2 0·1 0·2 0·3 0·4 0·5 11 1·2 1·3 1·4 1·5 2·1 2·2 2·3 2·4 2·5 3·1 3·2 3·3 3·4 3·5 4·1 4·2 4·3 4·4 4·5 5·1 5·2 5·3 5·4 5·5 6·1 6·2 6·3 6·4 6·5 7·1 7·2 7·3 7·4 7·5 8·1 8·2 8·3 8·4 8·5	Using place value Count in 0·1s, 0·01s e.g. Know what 0·1 more than 0 10s 1s 0 Partitioning e.g. 2·4 + 5·8 as 2 + 5 and 0·4 the totals: 7 + 1·2 = 8·2 0·1 0·2 0·3 0·4 0·5 0·6 11 1·2 1·3 1·4 1·5 1·6 2·1 2·2 2·3 2·4 2·5 2·6 3·1 3·2 3·3 3·4 3·5 3·6 4·1 4·2 4·3 4·4 4·5 4·6 5·1 5·2 5·3 5·4 5·5 5·6 6·1 6·2 6·3 6·4 6·5 6·6 7·1 7·2 7·3 7·4 7·5 7·6 8·1 8·2 8·3 8·4 8·5 8·6	Using place value Count in 0·1s, 0·01s e.g. Know what 0·1 more than 0·51 10s 1s 0·1s 0 5 Partitioning e.g. 2·4 + 5·8 as 2 + 5 and 0·4 + 0·6 the totals: 7 + 1·2 = 8·2 0·1 0·2 0·3 0·4 0·5 0·6 0·7 11 12 13 14 15 16 17 21 2·2 2·3 2·4 2·5 2·6 2·7 31 3·2 3·3 3·4 3·5 3·6 3·7 41 4·2 4·3 4·4 4·5 4·6 4·7 5·1 5·2 5·3 5·4 5·5 5·6 5·7 6·1 6·2 6·3 6·4 6·5 6·6 6·7 7·1 7·2 7·3 7·4 7·5 7·6 7·7 8·1 8·2 8·3 8·4 8·5 8·6 8·7	Using place value Count in 0·1s, 0·01s e.g. Know what 0·1 more than 0·51 is 10s 1s 0·1s 0 5 Partitioning e.g. 2·4 + 5·8 as 2 + 5 and 0·4 + 0·8 are the totals: 7 + 1·2 = 8·2 01 02 03 04 05 06 07 08 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 31 32 33 34 35 36 37 38 41 42 43 44 45 46 47 48 51 52 53 54 55 56 57 58 61 62 63 64 65 66 67 68 71 72 73 74 75 76 77 78	Using place value Count in 0·1s, 0·01s e.g. Know what 0·1 more than 0·51 is 10s 1s 0·1s 0·0 5 1 Partitioning e.g. 2·4 + 5·8 as 2 + 5 and 0·4 + 0·8 and continue than totals: 7 + 1·2 = 8·2 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/2 1/2 2/3 2·4 2·5 2·6 2·7 2·8 2·9 1/3 1/3·2 3·3 3·4 3·5 3·6 3·7 3·8 3·9 1/4 1/4·2 4·3 4·4 4·5 4·6 4·7 4·8 4·9 1/5 1/5·2 5·3 5·4 5·5 5·6 5·7 5·8 5·9 1/6 1/6·2 6·3 6·4 6·5 6·6 6·7 6·8 6·9 1/4 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/4 1/4·2 1/4 3/4 1/5 1/6 1/7 1/8 1/9 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	Using place value Count in 0·1s, 0·01s e.g. Know what 0·1 more than 0·51 is 10s

Counting on

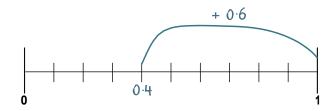
Add two decimal numbers by adding the 1s, then the 0.1s/0.01s

Year 5

e.g.
$$5.72 + 3.05$$
 as $5.72 + 3 (8.72) + 0.05 = 8.77$

Add near multiples of 1

e.g.
$$6.34 + 0.99$$

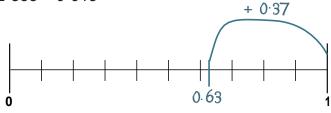

Count on from large numbers

Using number facts

Number bonds to 1 and to the next whole number

e.g.
$$5.7 + 0.3$$

Mental Addition


Add to the next 10 from a decimal number

e.g.
$$7.8 + 2.2 = 10$$

Using number facts

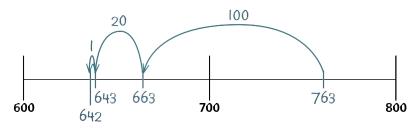
Number bonds to 1 and to the next multiple of 1

e.g.
$$0.63 + 0.37$$

Year 6

Add to the next 10

	Year 5	Year 6
Written Addition	Expanded column addition for money leading to compact column addition for adding several amounts of money e.g. £14·64 + £28·78 + £12·26 fl4 60p 4p f28 70p 8p + fl2 20p 6p fl l0p f55 60p 8p Compact column addition to add pairs of 5-digit numbers Continue to use column addition to add towers of several larger numbers Use compact addition to add decimal numbers with up to 2 decimal places e.g. 15·68 + 27·86 15·68 + 27·86 11·1 43·54 Add related fractions e.g. 3/4 + 1/8 = 7/8	Compact column addition for adding several large numbers and decimal numbers with up to 2 decimal places Compact column addition with money e.g. £14·64 + £28·78 + £12·26 f 4·64 + £28·78 f 12·26

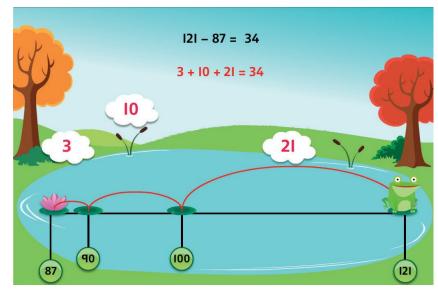


	Overview of Strategies and Method	is - Subtraction
	Year 3	Year 4
Mental Subtraction	Taking away Use place value to subtract e.g. $348 - 300$ e.g. $348 - 40$ e.g. $348 - 8$ Take away multiples of 10, 100 and £1 e.g. $476 - 40 = 436$ e.g. $476 - 300 = 176$ e.g. £ $4 \cdot 76 - £2 = £2 \cdot 76$ Partitioning e.g. $68 - 42$ as $60 - 40$ and $8 - 2$ e.g. £ $6 \cdot 84 - £2 \cdot 40$ as £ $6 - £2$ and $80p - 40p$	Taking away Use place value to subtract e.g. $4748 - 4000$ Take away multiples of 10, 100, 1000, £1, 10p or 0·1 e.g. $8392 - 50$ e.g. $6723 - 3000$ e.g. £3·74 - 30p e.g. $5 \cdot 6 - 0 \cdot 2$ Partitioning e.g. £5·87 - £3·04 as £5 - £3 and 7p - 4p e.g. 7493 - 2020 as 7000 - 2000 and 90 - 20
Mer	10 10 10 10 10 10 10 10 10 10 10 10 10 1	7 4 9 3 - 20 20 90 - 20 Count back e.g. 6482 - 1301 as 6482 - 1000 (5482) - 300 (5182) - 1 = 5181 Subtract near multiples of 10, 100, 1000 or £1 e.g. 3522 - 1999 e.g. £34·86 - £19·99

Count back in 100s, 10s then 1s

e.g.
$$763 - 121$$
 as $763 - 100$ $(663) - 20$ $(643) - 1 = 642$

Subtract near multiples of 10 and 100

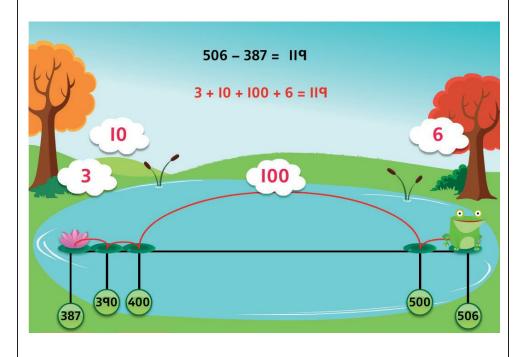

e.g. 648 – 199

e.g. 86 - 39

Counting up

Find a difference between two numbers by counting up from the smaller to the larger

e.g.
$$121 - 87$$


Counting up

Find a difference between two numbers by counting up from the smaller to the larger

Year 4

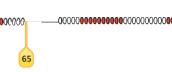
e.g. 506 - 387

e.g. 4000 - 2693

Mental Subtraction

Written Subtraction

Using number facts

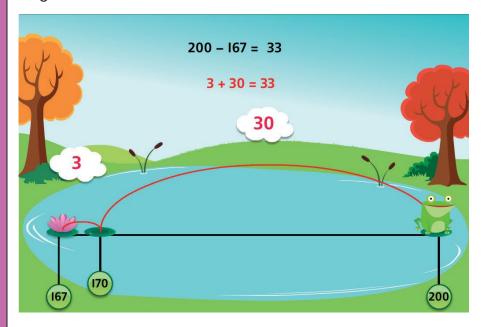

Know pairs which total each number to 20

e.g.
$$20 - 14 = 6$$

Number bonds to 100

e.g.
$$100 - 48 = 52$$

e.g.
$$100 - 35 = 65$$

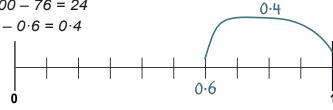


Subtract using number facts to bridge back through a 10

Year 3

e.g.
$$42 - 5 = 42 - 2(40) - 3 = 37$$

Develop counting up subtraction



Using number facts

Number bonds to 10 and 100 and derived facts

e.g.
$$100 - 76 = 24$$

e.g.
$$1 - 0.6 = 0.4$$

Year 4

Number bonds to £1 and £10

e.g. £
$$1.00 - 86p = 14p$$

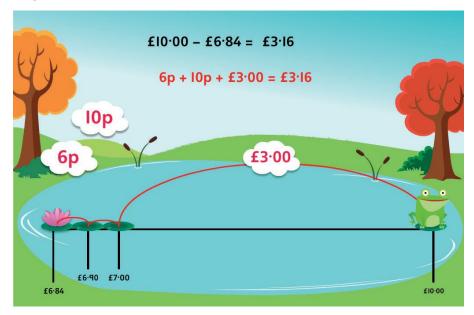
e.g. £
$$10.00 - £3.40 = £6.60$$

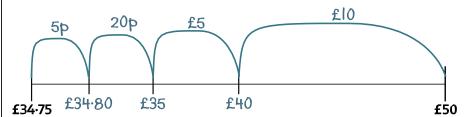
Expanded column subtraction with 3- and 4-digit numbers

e.g.
$$726 - 358$$

Begin to develop compact column subtraction

Written Subtraction


Year 3


Use counting up subtraction to find change from £10, £20, £50 and £100

Year 4

Use counting up subtraction to find change from £1, £5 and £10 e.g. £10.00 - £6.84

e.g. Buy a computer game for £34.75 using £50

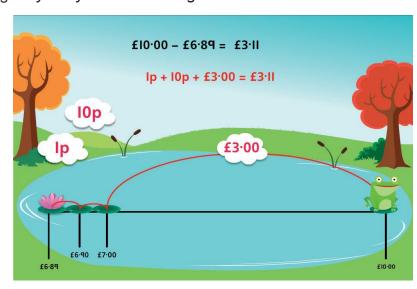
Subtract like fractions

- - e.g.
$$3/8 - 1/8 = 2/8$$

Recognise complements of any fraction to 1

- - e.g.
$$1 - 1/4 = 3/4$$

- e.g.
$$1 - 3/5 = 2/5$$



	Year 5	Year 6
Mental Subtraction	Taking away Use place value to subtract decimals e.g. $4.58 - 0.08$ e.g. $6.26 - 0.2$ Take away multiples of powers of 10 e.g. $15.672 - 300$ e.g. $4.82 - 2$ e.g. $2.71 - 0.5$ e.g. $4.68 - 0.02$ Partitioning or counting back e.g. $3964 - 1051$ e.g. $5.72 - 2.01$ Subtract near multiples of 1, 10, 100, 1000, 10 000 or £1 e.g. $86.456 - 9999$ e.g. $3.58 - 1.99$ Counting up Find a difference between two numbers by counting up from the smaller to the larger e.g. £12.05 - £9.59 e.g. $2009 - 869$	Taking away Use place value to subtract decimals e.g. 7·782 – 0·08 e.g. 16·263 – 0·2 Take away multiples of powers of 10 e.g. 132 956 – 400 e.g. 686 109 – 40 000 e.g. 7·823 – 0·5 Partitioning or counting back e.g. 3964 – 1051 e.g. 5·72 – 2·01 Subtract near multiples of powers of 10 e.g. 360 078 – 99 998 e.g. 12·831 – 0·99

Year 5

Find change using shopkeepers' addition e.g. Buy a toy for £6·89 using £10·00

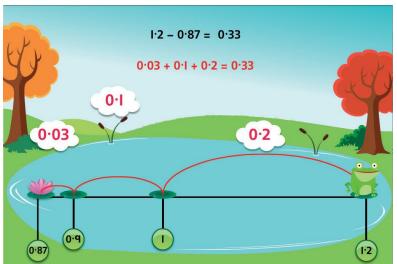
Find a difference between two amounts of money by counting up

Using number facts

Derived facts from number bonds to 10 and 100

e.g.
$$2 - 0.45$$
 using $45 + 55 = 100$

e.g.
$$3 - 0.86$$
 using $86 + 14 = 100$


Number bonds to £1, £10 and £100

e.g. £
$$100 - £66$$
 using $66 + 34 = 100$

Counting up

Find a difference between two decimal numbers by counting up from the smaller to the larger

Year 6

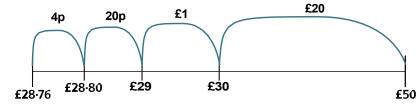
Using number facts

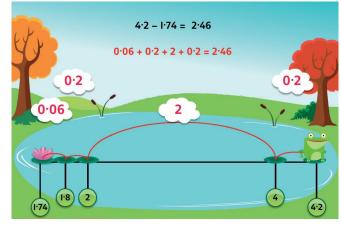
Derived facts from number bonds to 10 and 100

e.g.
$$0.1 - 0.075$$
 using $75 + 25 = 100$

e.g.
$$5 - 0.65$$
 using $65 + 35 = 100$

Number bonds to £1, £10 and £100


e.g. £100 - £66·20 using 20p + 80p = £1 and £67 + £33 = £100


			_
W		100	
		1 60	l-o 1

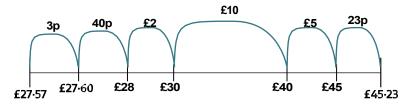
Compact column subtraction for numbers with up to 5 digits e.g. 16 324 – 8516

Continue to use counting up subtraction for subtractions involving money, including finding change

Use counting up subtraction to subtract decimal numbers

e.g. $4 \cdot 2 - 1 \cdot 74$

Subtract related fractions


NB Counting up subtraction provides a default method for ALL children

Year 6

Compact column subtraction for large numbers

Use counting up for subtractions where the larger number is a multiple or near multiple of 1000 or 10000

Use counting up subtraction when dealing with money

Use counting up subtraction to subtract decimal numbers

e.g.
$$13 \cdot 1 - 2 \cdot 37$$

10

0.03

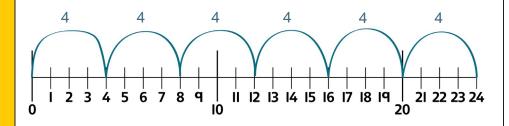
0.04

13

13-13-1

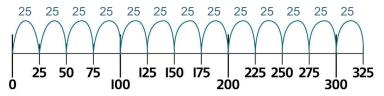
Subtract unlike fractions, including mixed numbers

NB Counting up subtraction provides a default method for ALL children

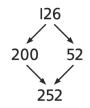

Mental Multiplication

Counting in steps ('clever' counting)

Count in 2s, 3s, 4s, 5s, 8s and 10s


1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Year 3


Counting in steps (sequences)

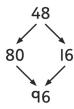
Count in 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, 11s, 12s, 25s, 50s, 100s and 1000s

Doubling and halving

Find doubles to double 100 and beyond using partitioning e.g. *double 126*

Begin to double amounts of money e.g. £3·50 doubled is £7

Use doubling as a strategy in multiplying by 2, 4 and 8 e.g. 34×4 is double 34 (68) doubled again = 136


Mental Multiplication

Year 3

Year 4

Doubling and halving

Find doubles of numbers to 50 using partitioning e.g. *double 48*

Use doubling as a strategy in multiplying by 2 e.g. 18×2 is double 18 = 36

Grouping

Recognise that multiplication is commutative

e.g.
$$4 \times 8 = 8 \times 4$$

Multiply multiples of 10 by 1-digit numbers

e.g.
$$30 \times 8 = 240$$

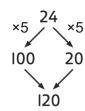
Multiply 'friendly' 2-digit numbers by 1-digit numbers

e.g. 13 × 4

Using number facts

Know doubles to double 20

e.g. double 15 is 30


Know doubles of multiples of 5 to 100

e.g. double 85 is 170

Know ×2, ×3, ×4, ×5, ×8, ×10 tables facts

Grouping

Use partitioning to multiply 2-digit numbers by 1-digit numbers

Multiply multiples of 100 and 1000 by 1-digit numbers using tables facts

e.g.
$$400 \times 8 = 3200$$

Multiply near multiples by rounding e.g.

$$24 \times 19$$
 as $(24 \times 20) - 24 = 456$

Using number facts

Know times-tables up to 12×12

×	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	11	24
3	3	6	9	12	15	18	21	24	27	30	22	36
4	4	8	12	16	20	24	28	32	36	40	33	48
5	5	10	15	20	25	30	35	40	45	50	44	60
6	6	12	18	24	30	36	42	48	54	60	55	72
7	7	14	21	28	35	42	49	56	63	70	66	84
8	8	16	24	32	40	48	56	64	72	80	77	96
9	9	18	27	36	45	54	63	72	81	90	88	108
10	10	20	30	40	50	60	70	80	90	100	99	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

e.g. 23 × 4

Year 3

Build on partitioning to develop grid multiplication

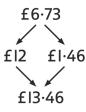
×	20	3	
4	80	12	= 92

Use grid multiplication to multiply 3-digit numbers by 1-digit numbers

×	200	50	3	
6	1200	300	18	= 1518

Use a vertical written algorithm (ladder) to multiply 3-digit numbers by 1-digit numbers

Use grid multiplication to multiply 2-digit numbers by 2-digit numbers


		6	10	×
640	=	240	400	40
128	=	48	80	8
768				

Doubling and halving

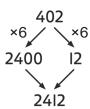
Double amounts of money using partitioning

e.g. double £6.73

Year 5

Use doubling and halving as a strategy in multiplying by 2, 4, 8, 5 and 20

e.g. 58×5 is half of 58×10 (580) = 290


Grouping

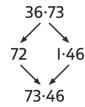
Multiply whole numbers and decimals by 10, 100, 1000 $\,$

e.g.
$$3 \cdot 4 \times 100 = 340$$

Use partitioning to multiply 'friendly' 2- and 3-digit numbers by 1-digit numbers

e.g. 402×6 as 400×6 (2400) and 2×6 (12) = 2412

Use partitioning to multiply decimal numbers by 1-digit numbers e.g. 4.5×3 as 4×3 (12) and 0.5×3 (1.5) = 13.5


Multiply near multiples by rounding e.g.

$$32 \times 29 \text{ as } (32 \times 30) - 32 = 928$$

Doubling and halving

Double decimal numbers with up to 2 places using partitioning e.g. double 36.73

Year 6

Use doubling and halving as strategies in mental multiplication

Grouping

Use partitioning as a strategy in mental multiplication, as appropriate

e.g.
$$8.4 \times 8$$
 as 8×8 (64) and 0.4×8 (3.2) = 67.2

Use factors in mental multiplication

e.g.
$$3.42 \times 5$$
 as half of $3.42 \times 10 = 17.1$

Multiply decimal numbers using near multiples by rounding

e.g.
$$4.3 \times 19$$
 as $(4.3 \times 20) - 4.3 = 81.7$

Year 5	Year 6
Using number facts Use times-tables facts up to 12 × 12 to multiply multiples of 10/100 of the multiplier e.g. 4 × 6 = 24 so 40 × 6 = 240 and 400 × 6 = 2400 Use knowledge of factors and multiples in multiplication e.g. 43 × 6 is double 43 × 3 e.g. 28 × 50 is half of 28 × 100 (2800) = 1400 Know square numbers and cube numbers	Use times-tables facts up to 12×12 in mental multiplication of large numbers or numbers with up to 2 decimal places e.g. $6 \times 4 = 24$ and $0.06 \times 4 = 0.24$
Short multiplication of 2-, 3- and 4-digit numbers by 1-digit numbers e.g. 435×8	Short multiplication of 2-, 3- and 4-digit numbers by 1-digit numbers e.g. 3743×6 $\begin{array}{r} 3 & 74 & 3 \\ \times & 6 \\ 42 & 1 \\ \hline 22458 \end{array}$ Long multiplication of 2-, 3- and 4-digit numbers by 2-digit numbers $\begin{array}{r} 456 \\ \times & 38 \\ \hline 13^{1}6^{1}80 \\ & 36^{4}4^{4}8 \\ \hline & 11 \end{array}$
X 6	× 38 13 ⁶ 80 36 ⁴ 4 ⁴ 8


	rear 5

Grid multiplication of numbers with up to 2 decimal places by 1-digit numbers

e.g. 1.34×6

×	I	0.3	0.04	
6	6	I·8	0.24	= 8.04

Multiply fractions by 1-digit numbers e.g. $3/4 \times 6 = 18/4 = 42/4 = 41/2$

NB Grid multiplication provides a default method for ALL children

Year 6

Short multiplication of decimal numbers using × 100 and ÷ 100

e.g.
$$13.72 \times 6$$
 as $(1372 \times 6) \div 100 = 82.32$

Short multiplication of money

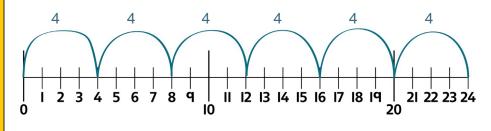
Grid multiplication of numbers with up to 2 decimal places by 1-digit numbers

×	6	0.7	0.06	
4	24	2.8	0.24	= 27.04

Multiply simple pairs of proper fractions

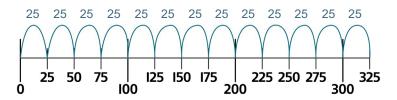
e.g.
$$1/2 \times 1/4 = 1/8$$

NB Grid multiplication provides a default method for ALL children


Mental Division

Counting in steps ('clever' counting)

Count in 2s, 3s, 4s, 5s, 8s and 10s


1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Year 3

Counting in steps (sequences)

Count in 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, 11s, 12s, 25s, 50s, 100s and 1000s

	Year 3	Year 4
rision	Doubling and halving Find half of even numbers to 100 using partitioning e.g. find half of 48	Doubling and halving Find half of even numbers to 200 and beyond using partitioning e.g. find half of 258 258 100 29
Mental Division	Use halving as a strategy in dividing by 2 e.g. $36 \div 2$ is half of $36 = 18$ Find half of odd numbers	Begin to halve amounts of money e.g. £9 halved is £4·50
		Use halving as a strategy in dividing by 2, 4 and 8 e.g. 164 ÷ 4 is half of 164 (82) halved again = 41

Grouping

Recognise that division is not commutative

e.g. 16 ÷ 8 does not equal 8 ÷ 16

Relate division to multiplications 'with holes in'

e.g. $_ \times 5 = 30$ is the same calculation as $30 \div 5 = _$ thus we can count in 5s to find the answer

Year 3

Divide multiples of 10 by 1-digit numbers

e.g.
$$240 \div 8 = 30$$

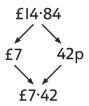
Begin to use subtraction of multiples of 10 of the divisor to divide numbers above the 10th multiple

e.g.
$$52 \div 4$$
 is 10×4 (40) and 3×4 (12) = 13

Grouping

Use multiples of 10 times the divisor to divide by 1-digit numbers above the tables facts

Year 4


Divide multiples of 100 by 1-digit numbers using division facts e.g. $3200 \div 8 = 400$

	Year 3	Year 4
Mental Division	Using number facts Know half of even numbers to 40 Know half of multiples of 10 to 200 e.g. half of 170 is 85 Know ×2, ×3, ×4, ×5, ×8, ×10 division facts	Using number facts Know times-tables up to 12 × 12 and all related division facts
Written Division	Perform divisions just above the 10th multiple using written jottings, understanding how to give a remainder as a whole number Use division facts to find unit and simple non-unit fractions of amounts within the times-tables - e.g. 3/4 of 48 is 3 × (48 ÷ 4) = 36	Use a written version of a mental method to divide 2- and 3-digit numbers by 1-digit numbers e.g. $86 \div 3$ as 20×3 (60) and 8×3 (24), remainder 2 $ \begin{array}{c} $

Doubling and halving

Halve amounts of money using partitioning e.g. half of £14 ·84 is half of £14 (£7) plus half of 84p (42p)

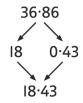
Year 5

Use doubling and halving as a strategy in dividing by 2, 4, 8, 5 and 20 e.g. $115 \div 5$ as double 115 (230) $\div 10 = 23$

Grouping

Divide numbers by 10, 100, 1000 to obtain decimal answers with up to 3 decimal places

e.g.
$$340 \div 100 = 3.4$$


Use the 10th, 20th, 30th ... multiple of the divisor to divide 'friendly' 2- and 3-digit numbers by 1-digit numbers

186 ÷ 6 =

Doubling and halving

Halve decimal numbers with up to 2 places using partitioning e.g. half of 36·86 is half of 36 (18) plus half of 0·86 (0·43)

Year 6

Use doubling and halving as strategies in mental division

Grouping

Use the 10th, 20th, 30th, ... or 100th, 200th, 300th ... multiples of the divisor to divide large numbers

e.g.
$$378 \div 9$$
 as 40×9 (360) and 2×9 (18), remainder 2

 $378 \div 9 =$

Use tests for divisibility

e.g. 135 divides by 3, as 1 + 3 + 5 = 9 and 9 is in the $\times 3$ table

	Year 5	Year 6
Mental Division	Using number facts Use division facts from the times-tables up to 12 × 12 to divide multiples of powers of 10 of the divisor e.g. 3600 ÷ 9 using 36 ÷ 9 Know square numbers and cube numbers	Use division facts from the times-tables up to 12 × 12 to divide decimal numbers by 1-digit numbers e.g. 1·17 ÷ 3 is 1/100 of 117 ÷ 3 (39) Know tests of divisibility for numbers divisible by 2, 3, 4, 5, 9, 10 and 25
Written Division	Use a written version of a mental strategy to divide 3-digit numbers by 1-digit numbers e.g. $326 \div 6$ as 50×6 (300) and 4×6 (24), remainder 2 $ \begin{array}{c} 3 \ 2 \ 6 \div 6 = \\ $	Short division of 3- and 4-digit numbers by 1-digit numbers e.g. $139 \div 3$ $ \begin{array}{r} 4 & 6 & r & 1 \\ 3 & \boxed{1 & 3 & 19} \end{array} $ Long division of 3- and 4-digit numbers by 2-digit numbers e.g. $4176 \div 13$ $ \begin{array}{r} 300 + 20 + I, r & 3 \\ \hline 13 & \boxed{4 & 176} \\ -3900 \\ \hline 276 \\ -260 \\ \hline 16 \\ -13 \\ \hline 3 \end{array} $ $4176 \div 13 = 32I r 3$

	Year 5	Year 6
Division	Short division of 3- and 4-digit numbers by 1-digit numbers e.g. $139 \div 3$ $\begin{array}{r} 4 & 6 & r & 1 \\ \hline & & 1 & 3 & 19 \end{array}$	Give remainders as whole numbers, fractions or decimals Use place value to divide 1- and 2-place decimals by numbers \leq 12 e.g. $3.65 \div 5$ as $(365 \div 5) \div 100 = 0.73$ Divide proper fractions by whole numbers
Written	Give remainders as whole numbers or as fractions Find unit and non-unit fractions of large amounts - e.g. $3/5$ of 265 is $3 \times (265 \div 5) = 159$ Turn improper fractions into mixed numbers and vice versa	